Noticias Científicas y Artículos del Equipo Facultativo

Nueva Comprensión del Mecanismo de los Superconductores de Alta Temperatura

física cuántica Dec 19, 2017

Desde que en 1986 se descubriera la superconductividad de alta temperatura en los compuestos de óxido de cobre denominados cupratos, los científicos han tratado de entender cómo estos materiales pueden conducir la electricidad sin resistencia a temperaturas cientos de grados por encima de las temperaturas ultrabajas que requieren los superconductores convencionales. Estas propiedades, más allá de ser un verdadero reto científico, tienen también un enorme interés para fines industriales, ya que permiten un ahorro potencialmente enorme en la generación y el transporte de electricidad.

Uno de los mejores materiales candidatos a superconductor de alta temperatura siguen siendo los cupratos. Los resultados recientes sugieren que la causa del fenómeno está relacionada con las franjas fluctuantes. Los experimentos han establecido que las franjas de carga son universales en los superconductores de cupratos...

Continuar leyendo...

La Ruptura de las Ondas de Electrones Proporciona Nuevas Pistas sobre la Superconductividad de Alta Temperatura

Por: Dra. Amira Val Baker, Astrofísica de Resonance Science Foundation

La superconductividad es un efecto muy buscado, pero por desgracia sólo entra en este estado a temperaturas extremadamente bajas. Los conductores normales son dispendiosos e ineficientes, por lo que el deseo de comprender la superconductividad y replicar los efectos a temperaturas más altas es primordial.

Un equipo de científicos cree ahora que puede estar al borde de estos importantes conocimientos. En un experimento realizado en el Laboratorio Nacional de Brookhaven, el equipo dirigido por Hu Miao utilizó una técnica denominada dispersión inelástica de rayos X resonante (RIXS) para seguir la posición y la carga de los electrones.

Lo que descubrieron es que a altas temperaturas, cuando la superconductividad desaparece, poderosas ondas de electrones comienzan a desacoplarse y a comportarse de forma independiente. El estudio de estas ondas permite...

Continuar leyendo...

Una Partícula sin Masa que Podría Revolucionar la Electrónica

Por: Dr. Olivier Alirol, Físico de Resonance Science Foundation 

En 2015, tras 85 años de búsqueda, los investigadores confirmaron la existencia de una partícula sin masa llamada fermión de Weyl. Con la capacidad única de comportarse como materia y antimateria dentro de un cristal, esta cuasipartícula es como un electrón sin masa. La historia comenzó en 1928, cuando Dirac propuso una ecuación para la unificación fundacional de la mecánica cuántica y la relatividad especial al describir la naturaleza del electrón.  Esta nueva ecuación sugería tres formas distintas de partículas relativistas: los fermiones de Dirac, de Majorana y de Weyl. Y recientemente, se ha descubierto un análogo de los fermiones de Weyl en ciertos materiales electrónicos que presentan un fuerte acoplamiento orbital de espín y un comportamiento...

Continuar leyendo...

Una Medición más Precisa del Momento Magnético del Protón

El conocimiento preciso de las propiedades del protón, como su masa (radio de carga, y momento magnético, tiempo de vida), pone parámetros para cálculos precisos en la electrodinámica cuántica. Mientras que el modelo estándar tiene dificultades para dar una comprensión concreta de la naturaleza del protón y de sus características, la teoría de Haramein, por el contrario, funciona sorprendentemente bien.

Utilizando la geometría y la lógica puras, el modelo del protón de Schwarzschild (Schwarzschild Proton) y el de la masa holográfica del protón (Holographic mass of the proton) están dando una visión precisa de la naturaleza, la dinámica y los valores de las propiedades del protón, como la masa o el momento magnético anómalo. Sin embargo, las mediciones siguen siendo clave para mejorar los conocimientos actuales y confrontar los...

Continuar leyendo...

Físicos Reducen los Planes para el Próximo Gran Colisionador

La limitación de fondos y la escasez de partículas recién descubiertas obligan a los físicos a recortar los planes de su próximo gran proyecto del acelerador: una instalación multimillonaria conocida como Colisionador Lineal Internacional (ILC) en Japón. El 7 de noviembre, el Comité Internacional de Aceleradores del Futuro (ICFA), que supervisa los trabajos del ILC, aprobó la reducción a la mitad de la energía prevista para la máquina, de 500 a 250 gigaelectronvoltios (GeV), y el acortamiento de su túnel propuesto de 33,5 kilómetros de longitud en hasta 13 kilómetros. La versión reducida tendría que renunciar a algunas de sus investigaciones previstas, como los estudios del sabor "top" del quark, que sólo se produce a energías más altas.

El acelerador de partículas más potente construido hasta la fecha, el Gran Colisionador de...

Continuar leyendo...

Generación de Plasmoides Toroidales Mediante Cizallamiento Hidrodinámico Extremo

física física cuántica Nov 26, 2017

Uno de los cuatro estados de la materia, el plasma es un gas ionizado de electrones, protones y átomos que coexisten y se mueven coherentemente como un fluido. Se presentan de manera natural en forma de rayos, estrellas, el medio interestelar, las auroras, las atmósferas de los planetas, etc. De hecho, hay poca materia en el Universo que no exista en estado de plasma, lo que no es de extrañar si se tiene en cuenta que el Universo estaba formado inicialmente por un plasma de hidrógeno ionizado.

Los átomos son normalmente neutros desde el punto de vista eléctrico, por lo que un gas suele estar formado por partículas sin carga. Sólo cuando se le da suficiente energía a un gas puede producirse la ionización, es decir, cuando los átomos y/o las moléculas pierden o ganan un electrón para formar un ion con carga negativa o positiva. En este estado de plasma, estos están cargados...

Continuar leyendo...

Nuevo Fallo en la Teoría de la Energía Oscura

La teoría de la materia y la energía oscura está fracasando muy rápidamente, como informamos en una noticia reciente. Se han presentado varios de los enfoques novedosos más prometedores para explicar la "materia perdida" del universo, pero todos están fracasando; véase por ejemplo, el informe sobre las galaxias en un vórtice superfluido, en el que se discuten modelos alternativos como la gravedad newtoniana modificada y la solución de giro del espaciotiempo de Haramein-Rauscher para la relatividad general.

El problema de la materia oscura, planteado notablemente hace décadas por los estudios dinámicos de los cúmulos de galaxias y por las curvas de rotación planas de las galaxias, sigue resistiendo a las explicaciones. Se ha propuesto una impresionante variedad de partículas exóticas para dar cuenta de la materia oscura, y también teorías de gravedad modificada como...

Continuar leyendo...

La Frontera entre la Física Cuántica y la Clásica

física física cuántica Nov 26, 2017

Dos de las principales diferencias entre la física clásica y la cuántica son la causalidad y la cuantificación. Sin embargo, la relación entre la teoría clásica y la cuántica es mucho más compleja que eso. Para entender esta relación, es necesario observar las ideas intuitivas de los fundadores de la teoría cuántica.  Una de estas ideas es la teoría de la cuantización de Heisenberg, y otra el principio de correspondencia de Bohr o los paquetes de ondas (o estados coherentes) de Schrödinger. Estas siguen siendo de gran importancia para comprender el comportamiento clásico a partir de la mecánica cuántica.  Por otro lado, no se ha llegado a un consenso sobre la Interpretación de Copenhague.

Las propiedades de la mecánica cuántica han llevado a la identificación y cuantificación de muchas propiedades cuánticas no...

Continuar leyendo...

Nuevos Conocimientos sobre Cómo Viajan los Electrones en el Agua

Como la mecánica cuántica dota a las partículas de propiedades sorprendentes, permite explicar procesos físicos como la electrólisis. Mientras que la termodinámica da cuenta de ellos, independientemente de cualquier mecanismo, la mecánica cuántica proporciona una explicación coherente de los flujos de electrones que atraviesan la interfaz entre un conductor metálico y un medio acuoso.  Entender cómo viajan los electrones es importante en muchos campos: la producción de hidrógeno, la microscopía de barrido en túnel ambiental, la microscopía electroquímica de barrido y las aplicaciones de biosensores.

Las aplicaciones de biosensores son un campo de investigación muy prometedor. Los biosensores pueden definirse como un dispositivo analítico que convierte una respuesta biológica en una señal eléctrica. Estos sensores deben ser...

Continuar leyendo...

Las Nanopartículas Pueden Tener una Levitación Magnética Estable

En 1842, el matemático británico Samuel Earnshaw demostró que no es posible lograr la levitación estática utilizando cualquier combinación de imanes fijos y cargas eléctricas.  En este caso, la levitación estática significa la suspensión estable de un objeto contra la gravedad. Sin embargo, existen algunas formas de levitar sorteando los supuestos del teorema. Una de ellas consiste en un objeto giratorio con imanes fijos. Se trata del "levitrón", un juguete inventado por Roy Harrison en 1983.  La peonza puede levitar delicadamente sobre una base con una cuidadosa disposición de imanes siempre que su velocidad de rotación y su altura se mantengan dentro de ciertos límites. Este fenómeno podría resultar muy interesante si se aplica a las nanopartículas.

De hecho, según los efectos Einstein-de Haas y Barnett, un cambio en la magnetización de un...

Continuar leyendo...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.